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The formation of a liquid bridge during the coalescence of drops
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Abstract

This paper examines a mathematical model for the coalescence of two viscous liquid volumes in an inviscid gas or in a
vacuum which removes the pressure singularity at the instant of impact inherent in the classical formulation of the con-
tinuum model. The very early stages of coalescence are examined in order to study the formation of the liquid bridge
in two cases: (i) for two infinitely long, coalescing liquid cylinders; and (ii) for two coalescing spheres. Numerical solutions
are computed for the velocity and pressure fields in the flow in both cases, and they confirm the removal of the pressure
singularity. Also, the free-surface position at small times is determined.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Coalescence; Viscous; Surface tension
1. Introduction

The coalescence of liquid volumes is an important mechanism in a wide variety of engineering and indus-
trial applications such as the transport of dispersions of a liquid in a chemical technology (e.g. manufacturing
of powder), lab-on-chip devices, ink-jet printing and spray painting (where the drops interact on and with a
solid substrate), sintering, and jet cleaning of equipment in food processing. This type of fluid flow involves a
topological transition in the flow domain. Here we concentrate on the early stages of coalescence, including
the instant that the droplets first touch and the moments immediately after, and restrict the analysis to cases
where the liquid is surrounded by an inviscid gas or vacuum. Droplet coalescence has been studied experimen-
tally by Menchaca-Rocha et al. (2001), Beysens et al. (2002) and Pergamalis (2002). The earliest images taken
after the volumes have joined show that they are connected by a small liquid bridge. These works have been
backed up by some numerical computations (Lafaurie et al., 1994; Menchaca-Rocha et al., 2001; Pergamalis,
2002), which show good agreement with the available experimental data once the liquid bridge has formed.
There are a number of theoretical studies that have investigated the coalescence of liquid drops using classical
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fluid mechanics and a mixture of analytical and computational methods: Hopper (1984, 1990, 1992, 1993),
Lafaurie et al. (1994), Richardson (1997), Eggers et al. (1999), Keller et al. (2000), Pergamalis (2002),
Duchemin et al. (2003) and Billingham and King (2005). Such solutions also agree with experimental obser-
vations once the liquid bridge is formed, but are limited by an unphysical pressure singularity which occurs at
the instant that the coalescence process starts and located at the point where the volumes first touch. The prob-
lem is complicated by the fact that experimental observations are extremely difficult at very small times after
the initial impact. The presence of this pressure singularity in the classical model implies that the physics inher-
ent in the classical formulation is not sufficient to describe the whole coalescence process. Therefore to include
the moment of impact, a modified approach incorporating extra physics into the model must be required.

An approach that could provide the necessary physics to analyse droplet coalescence without singularities
(including the moment of impact) is to use a coupled molecular dynamics and continuum mechanics
approach. The microscopic model could be used to simulate the very early stages of coalescence and the con-
tinuum mechanics model would take over at later times, with the results of the molecular dynamics calcula-
tions providing the initial conditions for the classical fluid mechanics equations. This is effectively the
philosophy used in most previous theoretical studies, where typically the macroscopic continuum model is
used and calculations are started from a time when a smooth free-surface (the liquid bridge) has already
formed between the two volumes. Koplik and Banavar (1994) has alternatively proposed that a ‘‘mesoscopic’’
model might be possible, in which a hybrid macroscopic (i.e. continuum) model is combined seamlessly with a
microscopic (i.e. molecular) model. The key question which we address here is whether a macroscopic (i.e.
continuum) model can be used instead to describe the whole process, including this liquid bridge formation;
hence can this liquid bridge formation be instead considered as a macroscopic event? There is experimental
evidence that the classical kinematic boundary condition breaks down under certain circumstances (Jeong
and Moffatt, 1992). So perhaps this might be a route to removing this singularity?

One possibility for a purely continuum mechanics (macroscopic) approach which removes the singularity
has been proposed by Shikhmurzaev (2000) (from now on labelled I). At the point where the liquid volumes
first touch, there is a cusp in the free-surface. This model predicts that this cusp propagates away from the
initial impact point, and the liquid–gas free-surface becomes smooth at a finite distance from the point of ini-
tial contact, at a finite time after impact. This occurs since the cusp is allowed to continuously and smoothly
open out, forming a smooth free-surface in finite time. A key feature of this model is that surface tension is no
longer fixed as a constant, but can vary along the free-surface. Also, fluid particles are allowed in the model to
enter or leave the free-surface, as observed in Jeong and Moffatt (1992).

This model considers an internal liquid interface that is formed between the two coalescing volumes at
impact, consisting of the liquid particles trapped between the two drops. As the cusp opens out and propagates
away from the point of initial contact, this internal liquid–liquid interface is left behind the cusp, and connects
the two liquid volumes as the initial stages of coalescence occurs. This is the beginning of the formation of the
liquid bridge. The model describes fluid particles which travel from the liquid–gas free-surface, through the
opening propagating cusp, and onto this internal liquid–liquid interface connecting the two liquid volumes.
As the opening cusp propagates outwards, the area of this internal liquid–liquid surface increases. The model
allows these liquid particles which pass from the free-surface onto the liquid–liquid interface to lose their sur-
face properties in finite time. This means that the surface tension associated with these fluid particles relaxes in
finite time, starting from the equilibrium value of the surface tension of the free-surface and finishing a short
time later at zero surface tension. In other words, this model allows for these trapped particles to take a finite
time to adjust from being surface particles to particles in the interior of the fluid. This process allows for the
formation of a ‘‘surface tension relaxation tail’’ behind the propagating, opening cusp. The interior angle
(measured through the liquid) between the opening propagating free-surface and the surface tension relaxation
tail (contact angle) starts at 180� and changes to 90� in finite time, at which time a smooth free-surface is
formed.

These events will occur very quickly, but the model allows them to occur over a finite time interval rather
than instantaneously (see Fig. 1). Immediately after the moment of impact, a cusp forms in the free-surface
located at the point of impact of the two volumes. It propagates away from the impact point and opens
out under the action of surface tension, marking the line of intersection between the liquid–gas free-surface
and the trapped internal liquid–liquid interface (Fig. 1(a)). We call this an ‘‘opening propagating cusp’’,
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Fig. 1. A sketch of the early stages of coalescence.
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though of course it is only a cusp initially when the interior contact angle is 180�. On the liquid–gas interface
some distance away from this opening propagating cusp, the surface tension will be equal to the equilibrium
value associated with the liquid–gas interface. Moving along the free-surface, towards the opening propagat-
ing cusp, surface tension will reduce smoothly. There is also some residual surface tension left along the
trapped internal liquid–liquid interface and this smoothly reduces as one moves from the opening propagating
cusp to the point of impact. As the opening cusp propagates away from the impact point, Fig. 1(b), the surface
tension on the trapped internal liquid–liquid interface will reduce to zero (the equilibrium value associated
with that interface). Here the surface tension relaxation tail is starting to disappear. The opening cusp will
continue to propagate and will ultimately form a smooth free-surface, at which time the surface tension along
all of the liquid–gas interface is at its equilibrium value and the surface tension along the whole of the interior
liquid–liquid interface is zero (Fig. 1(c)). In Fig. 1, the trapped internal liquid–liquid interface is shown as the
dashed horizontal line between the opening propagating cusps. Fluid particles travel from the free-surface
onto this internal liquid–liquid interface as the cusp propagates outwards. On these dashed lines the surface
tension is tending towards zero (the surface tension relaxation tail).

Like any new model, this theory of interface formation/disappearance requires testing, mathematically and
experimentally, before it can be widely accepted (or if wrong, rejected). There is experimental evidence to sup-
port this model (Blake et al., 1999) but more work needs to be done to validate the model. We aim to critically
test it in the case of coalescence by solving the model equations both asymptotically and computationally. This
is particularly important, since if this model is correct, it would solve outstanding problems in (i) coalescence,
(ii) jet breakup and film rupture (Shikhmurzaev, 2005a,b,c) and (iii) dynamic wetting (Shikhmurzaev, 1993,
1994, 1996, 1997, 2002). The interface formation model has, however, been criticised recently in Eggers and
Evans (2004), though this criticism was rebutted by Shikhmurzaev and Blake (2004). Ultimately the interface
formation model will either be accepted or rejected, like any theory, on the basis of comparison with exper-
imental data. Thus in order to test whether this model is accurate and useful, it is necessary to compare com-
putational and experimental results over the appropriate time interval, and this paper is a step towards
producing the necessary numerical data.

The objectives of the research documented in this paper are: to test that this model has solutions of the type
claimed in I in which the free-surface cusp centred at the point of coalescence propagates away from the point
of impact and opens out; that the solutions are free of the pressure singularity inherent in the conventional
approach; to suggest experimental regimes in which to test the theory. In I this theory was applied to the case
of two coalescing liquid cylinders where a small time asymptotic approximation was derived. Here we extend
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these asymptotics to determine the position of the free-surface at small times, and compute the velocity and
pressure fields for the first time. Also, since coalescing cylinders are difficult to observe experimentally, these
small time asymptotics are extended here to the case of two coalescing spheres for which numerical solutions
are also computed.

2. Mathematical model

In the interface formation model (Shikhmurzaev, 1993–2005) the physical thicknesses of the internal liquid–
liquid layer and the free-surface are assumed to be very small: estimates for simple fluids are of the order of
nanometers (Blake et al., 1999; Blake and Shikhmurzaev, 2002; and I). For the purposes of the mathematical
model the thickness of these interfaces is assumed to be infinitesimal and so they reduce to geometrical
surfaces in the model.

The continuity and Navier–Stokes equations
r � u ¼ 0; ð1Þ
ou

ot
þ ðu � rÞu ¼ � 1

q
rp þ mr2u ð2Þ
are solved with a set of modified boundary conditions. Here t is time, u is the velocity of the liquid in the bulk,
p is the bulk pressure, q is the density of the incompressible liquid and m is the kinematic viscosity. The con-
ventional viscous free-surface boundary conditions (on the liquid–gas interface) for constant surface tension
are generalised to allow surface tension to vary and become
oG
ot
þ w � rG ¼ 0; ð3Þ

ðI� nnÞ � P � nþrr ¼ 0; ð4Þ
p0 þ n � P � n ¼ rr � n; ð5Þ
r ¼ cð.0 � .Þ; ð6Þ
o.
ot
þr � ð.wÞ ¼ � .� .e

s

� �
; ð7Þ

ð1þ 4abÞrr ¼ 4bðI� nnÞ � ðw� uÞ ð8Þ
and
qðu� wÞ � n ¼ .� .e

s
. ð9Þ
These boundary conditions apply on the free-surface and also on the trapped interior liquid–liquid layer newly
formed between the two liquid volumes (except for the normal stress boundary condition (5), which defines the
free-surface position, and is only applied on the free-surface). Here w is the velocity with which the free-surface
and the internal liquid–liquid interface are transported. Eq. (3) is the kinematic boundary condition for the
free-surface G(r, t) = 0, where r is the free-surface position vector. Eq. (4) is the tangential stress boundary
condition where r is the variable surface tension, n is the unit normal to the interface pointing into the liquid,
I is the identity tensor, P = �pI + l[$u + ($u)T] is the stress tensor in the liquid, l is viscosity and the super-
script ‘‘T’’ denotes transpose. Note that Eq. (3) on the trapped internal liquid–liquid interface becomes
w Æ n = 0, since this internal interface will be assumed to be stationary.

Eq. (5) is the normal stress boundary condition where p0 is the external pressure. The variation of surface
tension is defined by the surface equation of state, Eq. (6), where c is a liquid constant of linear proportionality
and . is the surface density associated with the interface (with dimensions of mass per unit area, since the inter-
face is a geometrical surface of zero thickness in this model). The surface density that gives zero surface tension
is .0 (this is required for equilibrium on the trapped interior liquid–liquid layer). Blake and Shikhmurzaev
(2002) estimated that .0 � qdl where dl is the thickness of the real physical interfacial layer. This thickness is
likely to consist of several molecules and the liquid inside the interfacial layer is considered to be compressible.
The interface mass conservation is quantified by the surface continuity Eq. (7). The term on the right-hand



S.P. Decent et al. / International Journal of Multiphase Flow 32 (2006) 717–738 721
side of Eq. (7) allows the surface density . to relax to its equilibrium value .e in a finite time, and on the order
of the surface tension relaxation time s which will usually be very small (perhaps nano- or microseconds, and
will have a characteristic value for any liquid at a given temperature). There are two parts to this interface: the
trapped interior liquid–liquid interface and the liquid–gas free-surface. The surface tension on the liquid–
liquid interface will eventually reach an equilibrium value of zero when the volumes have coalesced (this
corresponds to the eventual disappearance of the surface tension relaxation tail). Surface tension along the
liquid–gas free-surface will relax to some positive equilibrium value which corresponds to the equilibrium
surface tension of that interface. Thus r relaxes to its equilibrium along each interface in a time of order s.

So far, values used for s in the various studies are only estimates. Appropriate experiments will have to be
designed (with the help of modelling such as described here and in the referenced works) to provide more pre-
cise measurements. In I, s was estimated to range from 10�9 to 10�7 seconds for low to medium viscosity flu-
ids. Davies and Rideal (1963) estimated that the surface tension relaxation time for water is of the order
nanoseconds. In an experimental study carried out in Blake and Shikhmurzaev (2002), a series of water–
glycerol liquids were considered where their viscosities ranged from 1.5 · 10�3 to 0.67 Pa s. For the least vis-
cous liquids in that study, s was estimated to be 10�9 to 10�8 s. For the most viscous liquids s was estimated to
be 10�6 to 10�5 s by comparing theoretical and experimental results. It was also hypothesised in Blake and
Shikhmurzaev (2002) from experimental data that the surface tension relaxation time is proportional to the
viscosity. Since there are commercially available silicone oils that have viscosities of the order of 103 Pa s,
if s / l one might expect silicone oils to have surface tension relaxation times of the order of milliseconds.
This would make them suitable candidate fluids for experimental studies on liquid bridge formation because
s might then be sufficiently large for these events to be recorded by high speed photography. A much smaller
estimate for s of 10�18 s was given in Eggers and Evans (2004) (see Shikhmurzaev et al., 2004 for a comment
on this estimate).

Let x be the distance from the point of initial contact through a line which passes through the propagating,
opening cusp. Also let x = x*(t) be the location of the cusp. Then the equilibrium surface density .e is given
by
.e ¼
.0; 0 6 x < x�ðtÞ;
.1e; x > x�ðtÞ;

�
ð10Þ
where .1e is the equilibrium surface density at the liquid–gas free-surface and .1e < .0. Thus the equilibrium
surface tension on the free-surface is r1e = c(.0 � .1e) and the equilibrium surface tension on the trapped inte-
rior liquid–liquid interface is zero. The dominant flow in the early stages of coalescence is driven by surface
tension and the surface tension gradient is specified by boundary condition (8). Here a and b are constants that
represent properties of the liquid (estimates for a and b are given in Blake and Shikhmurzaev, 2002). Eq. (9)
specifies the mass transfer between the fluid bulk and the interfaces.

The surface parameters r, ., w are defined only on the interface, i.e. the ‘‘interface’’ is the trapped interior
liquid–liquid interface between the two volumes as well as the free-surface at the liquid–gas interface. Since the
publication of I, the interface formation/disappearance theory has been generalised to allow for a mass flux
out of the interfacial layer (Shikhmurzaev, 2002, 2005a,b,c). Eqs. (9) and (8) replace Eqs. (18) and (17) in I

respectively. It should be noted that the magnitude of the effects of this modification are of the order
.e/q. Since .e is a surface density (mass in the surface divided by surface area), and q is a bulk density, then
.e/q is of the order dl, the width of the interfacial layer. This will be approximately nanometres, or less, in most
liquids and therefore it may be reasonable to expect that this mass transfer represented by the right-hand side
of (9) is negligible. We shall discuss this point further in later sections.

The contact line is the line of intersection between the trapped interior liquid–liquid interface and liquid–
gas free-surface at x = x*(t). These layers meet as at an angle hd, the contact angle, measured through the
liquid. From the moment of initial contact through to the formation of a smooth free-surface, hd evolves from
180� to 90�. By the conditions of continuity of surface flux and acting forces on the contact line
ð.wÞ1 � e1 þ ð.wÞ2 � e2 ¼ 0 ð11Þ

and
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r1 cos hd þ r2 ¼ 0. ð12Þ

The subscripts 1 and 2 denote the limits of a function as the position vector r tends to the contact line along the
free-surface and along the trapped interior liquid–liquid layer respectively. The unit vectors e1 and e2 are
directed along these interfaces, and point away from the contact line.

If s = 0 in (3)–(9), then these equations become equal to the boundary conditions in the classical continuum
formulation for viscous free-surface flow.

3. Coalescing cylinders and spheres

We now solve this model for two cases: both involve two coalescing fluid volumes of equal radii, of the
same viscous liquid, coalescing in a vacuum or in an inviscid gas. In the first case these volumes are cylinders,
and in the second case spheres. The impact speeds U1 of the coalescing volumes, in both cases, are taken to be
equal and sufficiently small to ensure that the early stages of coalescence are self-similar. We solve here for
small times when the contact angle hd � 180�. We examine small time asymptotics so that t� s where
t = 0 is the moment of impact. We also assume that the distance of the contact line from the impact point
x*(t) is much less than the droplet radius R for small times much less than s.

The origin is located at the impact point, and for the coalescence of two cylinders, the Cartesian (x, y) coor-
dinate system is used where the x-axis points through the cusp between the cylinders and the y-axis lies on the
centre of each cylinder, so that the x-axis is between the two cylinders at the moment of impact. Cylindrical
coordinates are used instead for two coalescing spheres, and here the x-coordinate becomes a radius from the
central axis of the cylindrical polar system and the y-coordinate is the distance along this central axis, again
through the centre of each sphere (Fig. 2). The trapped internal liquid–liquid interface is then at y = 0 for
0 < x < x*(t). (By symmetry, it will only be necessary to solve the equations for y P 0 and x P 0.) The contact
line at the opening propagating cusp is at x = x*(t), y = 0.

The following similarity transformation is used to solve Eqs. (1) and (2) subject to boundary conditions (3)
to (9), (11) and (12):
n ¼ xffiffi
t
p and g ¼ y ffiffi

t
p . ð13Þ
The equations are non-dimensionalised using the scales for time, length, velocity, pressure, surface tension and
surface density
x

y

Impact point
(x,y) = (0,0)

Fig. 2. Coordinate system used for the small time asymptotics.
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s; L ¼ ðsmÞ
1
2; U 0 ¼

m
s

� �1
2

;
l
s
; r1e; .0; ð14Þ
respectively and all quantities will from now be taken to be non-dimensional.
On the x-axis, for 0 6 x 6 x*(t), behind the cusp, particles are gradually loosing their surface properties and

this path traced behind the opening, propagating cusp is the surface tension relaxation tail. The length scale L

is the characteristic length associated with the surface tension relaxation tail, and U0 is the characteristic veloc-
ity associated with the surface tension flow which is assumed to be dominant over the impact speed U1 of the
drops. Under this non-dimensionalisation the Reynolds number becomes unity. The self-similar location of
the cusp is given by
x�ðtÞ ¼ n�t
1
2 ð15Þ
and the asymptotic limit
U1
U 0

! 0;
R
L
!1; U1

U 0

R
L
� U1R

m
¼ n2

�
2
¼ constant, K1 ¼

dl
L
! 0; ð16Þ
is assumed, allowing for slow impact coalescence of large droplets. With K1� 1, we have that the thickness of
the interfacial layer dl is much less than the typical length of the surface tension relaxation tail L.

In Blake and Shikhmurzaev (2002) it was estimated that s / l. The lowest estimates for s in Blake et al.
(1999) and Blake and Shikhmurzaev (2002) (for low viscosity liquids such as water) are of the order 10�9 s.
If this is so, then one might also expect highly viscous silicone oils to have s of the order 10�3 s. Therefore,
the characteristic length associated with the surface tension relaxation tail, L in (14), can be expected to vary
from 10�8 m to 10�2 m. In I, it was estimated that dl is of the order nanometres for simple fluids. Taking this,
one can estimate that K1 will range from 0.1 (for low viscosity liquids) to 10�7 (for highly viscous liquids).
However, much more work needs to be done on experimental estimates for s, for which there is some
disagreement.

The small time, self-similar asymptotic expansions used for bulk velocity, pressure, surface density and
surface velocity are
uðx; y; tÞ ¼ tUðn; gÞ þ oðtÞ;
vðx; y; tÞ ¼ V 0ðn; gÞ þ tV ðn; gÞ þ oðtÞ;

pðx; y; tÞ � p0 ¼
ffiffi
t
p

P ðn; gÞ þ oð
ffiffi
t
p
Þ;

.ðx; tÞ ¼ �.1e þ tF iðnÞ þ oðtÞ;

usðx; tÞ ¼
ffiffi
t
p

SiðnÞ þ oð
ffiffi
t
p
Þ;

vsðx; tÞ ¼ tV sðnÞ þ oðtÞ
ði ¼ 1; n > n�; i ¼ 2; 0 6 n < n�Þ

ð17Þ
as t! 0, where u = uex + vey, w = usex + vsey, p is the non-dimensional fluid pressure and p0 the non-dimen-
sional pressure in the gas that is adjacent to the liquid free-surface. The expansion for .(x, t) means that the
surface tension at t = 0 on the liquid–liquid internal interface is equal to the free-surface equilibrium value.
Here U and V are the self-similar bulk velocity components and P the transformed pressure. The subscript
i in Eq. (17) is set to ‘2’ for values that apply on the trapped interior liquid–liquid interface, and ‘1’ if they
apply on the liquid–gas free-surface. The tangential, self-similar surface velocity component is therefore S1

along the liquid–liquid interface and S2 along the liquid–gas interface. The unit vectors ex and ey point in
the directions of the positive x and y axes. It will be seen that the free-surface is mapped to g = 0, n > n*

for small times.
The non-dimensional equilibrium surface density that applies to the liquid–gas interface is
�.1e ¼
.1e

.0

;
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so that in non-dimensional terms (10) becomes
�.e ¼
1; 0 6 x < n�t

1
2;

�.1e; x > n�t
1
2

(

for small times. Therefore the non-dimensional equilibrium surface density on the internal liquid–liquid inter-
face becomes equal to one. The kinematic condition (3) on the interior liquid–liquid interface becomes
w � n ¼ 0. ð18Þ

Then from this and Eqs. (1), (2), (9) and (17) we find
V 0 ¼ K1ð�q1e � �qeÞ;

so that V0 = O(K1), and hence negligible in this asymptotic limit. It follows from Eqs. (9), (17) and (18) that
V sðnÞ ¼
0; 0 6 n < n�;

V ðnÞ � K1F 1ðnÞ; n > n�.

�
ð19Þ
Defining the integer variable j such that in the cylindrical case j = 0, and for the spherical case j = 1, the
stream function that satisfies the continuity equation is
U ¼ � 1

n

� �j
oW
og

; V ¼ � � 1

n

� �j
oW
on

. ð20Þ
It follows that the small-time asymptotic, self-similar, equation for W which governs the initial stages of
coalescence, is
� n
2

o3W
onog2

þ n
2

o3W

on3
þ g

2

o3W

on2 og
þ g

2

o3W
og3

� �
þ j

2
3

o2W

on2
� 3

n
oW
on
þ 2

o2W
og2
þ g

n
o2W
onog

� �

¼ o4W

on4
þ 2

o4W

on2 og2
þ o4W

og4
þ j

3

n2

o2W

on2
� 3

n3

oW
on
� 2

n
o3W

on3
� 2

n
o3W

onog2

� �
ð21Þ
subject to the boundary conditions
W! 0 as n2 þ g2 !1; ð22Þ

W ¼ 0 and
o

on
1

nj

oW
on

� �
¼ 0 at n ¼ 0; ð23Þ

1

nj

oW
on
¼ �K1F 2ðnÞ; 0 < n < n�; g ¼ 0; ð24Þ

� 1

n

� �j
o

2W
og2
� o

2W

on2

� �
¼ k

Ca

dF 2

dn
; 0 < n < n�; g ¼ 0; ð25Þ

� 1

n

� �j
o2W
og2
� o2W

on2

� �
¼ k

Ca

dF 1

dn
at g ¼ 0; n > n�; ð26Þ
and
3

nj

o
3W

on2 og
þ n1�j

2
� 3j

n2

� �
o

2W
onog

� 3

2n

� �j
oW
og
þ 1

nj

o
3W

og3
¼ 0 ð27Þ
at g = 0, n > n*. The propagating opening cusp is then at g = 0, n = n*, with the free-surface on g = 0 for
n > n*, and with the trapped interior liquid–liquid layer on g = 0 for 0 < n < n*. The non-dimensional
constants are
Ca ¼
l3

r2
1eqs

� �1
2

; k ¼ c.0

r1e

¼ 1

1� �.1e

;

where Ca is the Capillary number.
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Eq. (21) arises from the Navier–Stokes equation (2), and boundary condition (22) follows from the asymp-
totic limit of Eq. (16). Boundary conditions (23) are conditions of symmetry, which can also be written as
us ¼ 0; u � 0;
ov
ox
� 0 at x ¼ 0; ð28Þ
which enables us to solve in the region g P 0 and n P 0 (or equivalently x P 0 and y P 0). Combining Eqs.
(9), (17) and (18) we obtain boundary condition (24). (Note that in Eq. (24) we retain an O(K1) term, even
though we use the limit K1! 0 here. We shall do this in order to investigate the effect of K1 small but finite
in some of our numerical simulations, pushing the asymptotics strictly beyond their validity, in order to under-
stand the role of the right-hand side of (9) in the model, neglected in I.) Boundary conditions (25) and (26) are
derived by applying the tangential stress boundary condition, Eq. (4), along the free-surface combined with
the surface equation of state (6). Substituting the surface velocity and density expansions from Eq. (17) into
the surface continuity equation (7), and combining this with the surface equation of state and surface tension
gradient relation, Eqs. (6) and (9) respectively, give at leading order
F 00i þ anþ j
n

� �
F 0i � 2aF i ¼ �bi; ð29Þ
where a prime denotes differentiation with respect to n and
a ¼ B
2k�.1e

; b1 ¼ 0; b2 ¼
B

k2�.1e

; B ¼ 4bm
r1eð1þ 4abÞ .
Here a and b are liquid constants, and estimates for their values (Blake and Shikhmurzaev, 2002) are b = l/dl

and ab = 1. The surface density function Fi(n), from Eq. (17), is related to the horizontal surface velocity
function Si(n) by
Si ¼ �
k
B

dF i

dn
ð30Þ
from Eqs. (6) and (8). It follows Eqs. (10)–(12) that
F 02ð0Þ ¼ 0; F 1ðn�Þ ¼ F 2ðn�Þ; F 1ð1Þ ¼ 0; F 01ðn�Þ ¼ F 02ðn�Þ. ð31Þ
The solution of (29) and (31) is
F 1 ¼ C1 2j þ an2
	 
 Z 1

n

expð�an2=2Þ
nj 2j þ an2
	 
2

dn; ð32Þ

F 2 ¼
b2

2a
� C2 2j þ an2

	 

; ð33Þ
where
C1 ¼
b2n

jþ1
�

a
expðan2

�=2Þ ð34Þ
and
C2 ¼
b2

2a 2j þ an2
�

	 
 1� 2anjþ1
� exp

an2
�

2

� �
2j þ an2

�
	 
 Z 1

n�

expð�an2=2Þ
n 2j þ an2
	 
2

dn

( )
. ð35Þ
Eq. (3) is the kinematic boundary condition where G represents the free-surface position. In the case of the
coalescing cylinders or spheres,
Gðx; y; tÞ ¼ y � f ðx; tÞ ¼ 0. ð36Þ

We pose the expansion
f ¼ tf 1ðnÞ þ t2f2ðnÞ þOðt3Þ ð37Þ
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for the position of the free-surface where f is non-dimensional. Substituting this expansion for f from Eq. (37),
along with the self-similar expansions for us and vs from Eq. (17), into Eq. (3), and combining with Eqs. (9)
and (13), the kinematic boundary condition becomes
�f1ðnÞ þ
1

2
n
of1

on
¼ 0 ð38Þ
at O(1), while at O(t) we get
�2f 2 þ
1

2
n
of2

on
� S1

of1

on
þ V ðn; 0Þ � K1F 1ðnÞ ¼ 0. ð39Þ
The above equations are valid on the free-surface (i.e. for n > n*). Eq. (38) has the solution
f1ðnÞ ¼ An2; ð40Þ
where A is a constant of integration. Using the above solution and Eq. (30), Eq. (39) gives
f2ðnÞ ¼ �2n4

Z n

n�

V ðb; g ¼ 0Þ þ K2bF 01ðbÞ � K1F 1ðbÞ
b5

� �
db; ð41Þ
where
K2 ¼
2Ak

B
.

At the cusp, i.e. n = n*, f2 is zero because y = f = 0 here. The integral in (41) converges because as n!1,
V! 0 and F 01 ! 0. Eq. (41) corresponds to the correction to the position of the free-surface in response to
the flow generated by the surface tension relaxation process. The term f1 corresponds to the initial shape of
the free-surface before impact. This can be seen since f1 = An2 = Ax2/t, so that at leading-order in t, f = A

x2. The initial shape of the free-surface is f ¼ ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2L2
p

Þ=L (in non-dimensional notation) since it is
initially cylindrical or spherical at the moment before impact. Hence from (16),
f ¼ L
2R

x2 þO
L3

R3

� �
ð42Þ
at the moment of impact at t = 0 (taking the negative alternative root since this corresponds to the free-surface
position close to the impact point). Therefore, A = L/(2R) which gives that A! 0 in the limit L/R! 0, from
Eq. (16) used here. Hence K2! 0 in (41). Also, K1! 0 in (41) from (16).

Finally we note that substituting the expansion for f given by Eq. (37), along with the asymptotic expan-
sions for u, v and p from (17), into Eq. (5), the normal stress boundary condition, gives
P ¼ 2
oV
og

ð43Þ
on g = 0 (on the free-surface). Therefore, boundary condition (43) should be applied on the liquid–gas inter-
face, g = 0, n > n*. Boundary condition (27) corresponds to the stream function formulation of Eq. (43).
Therefore, the normal stress boundary condition (27) and (43) means that the flow induced by the surface ten-
sion relaxation process causes a correction in small times to the position of the free-surface, given by Eq. (41).
That is, we find that the surface tension relaxation process causes the liquid–gas free-surface to move with
time.

4. Local asymptotics close to the propagating opening cusp

One can carry out an analysis of the flow in the vicinity of the propagating opening cusp by deriving a local
asymptotic approximation. The cylindrical case is considered in this section only for simplicity. The following
expansion is posed for the stream function close to the opening propagating cusp
W ¼ W� þ rf̂ ðhÞ þ r2ĝðhÞ þ r3 lnðrÞĥðhÞ þ r3l̂ðhÞ þ r4 lnðrÞm̂ðhÞ þ r4n̂ðhÞ þOðr5Þ; ð44Þ
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where
r ¼ ðn� n�Þ2 þ g2; tanðhÞ ¼ g
n� n�
valid for r! 0. Substituting the expansion given by Eq. (44) into Eq. (21) (for j = 0 for cylinders), subject to
boundary conditions (24)–(27), gives
W� ¼ K1F 2ðn�Þ; ð45Þ

f̂ ðhÞ ¼ D1 sinðhÞ � K1Caa0

k
cosðhÞ; ð46Þ

ĝðhÞ ¼ sinðhÞ
2

a1 sinðhÞ þ 4D3 cosðhÞf g � K1Caa1

2k
; ð47Þ

ĥ ¼ sinðhÞ
4p
ða2 þ b2Þ 2 cos2ðhÞ � 1

	 

; ð48Þ

l̂ðhÞ ¼ 1

12
D1 sinðhÞð4 cos2ðhÞ � 1Þ þ 2D2 sinðhÞð1� 4 cos2ðhÞÞ

� a2

h
2p

cosðhÞ sin2ðhÞ þ 1

2
b2 sin2ðhÞ cosðhÞ 1� h

2p

� �

þ 1

12
D3n� sinðhÞ 1þ 4 cos2ðhÞ

� �
þ K1Caa2 cosðhÞ

6k
3� 2 cos2ðhÞ
� �

; ð49Þ

m̂ðhÞ ¼ � 1

96p
sinðhÞ cosðhÞ½ða2 þ b2Þn� þ 16ða3 þ b3Þð4 cos2ðhÞ � 3Þ	 ð50Þ
and
n̂ðhÞ ¼ D3

96
sinðhÞ cosðhÞfn2

� þ 4g þ 2D4 sinðhÞ cosðhÞf4 cos2ðhÞ � 3g

� D1n�
96

sinðhÞ cosðhÞ þ D2n�
12

sinðhÞ cosðhÞ � a2n�
2304p

f24 cos2ðhÞ½hþ 3p	 � 6½5hþ 3p	

� 48 cos4ðhÞ þ 7 sinðhÞ cosðhÞg � b2n�
2304p

f30½p� h	 þ 24 cos2ðhÞ½h� p	 þ 7 sinðhÞ cosðhÞg

� a3h
6p
f1� 5 cos2ðhÞ þ 4 cos4ðhÞg þ b3

6p
fh� pþ 5 cos2ðhÞ½p� h	 þ 4 cos4ðhÞ½h� p	g

þ K1Caa3

12k
f3� 12 cos2ðhÞ þ 8 cos4ðhÞg þ K1Can�a2

24k
f2 cos2ðhÞ � 1� cos4ðhÞg; ð51Þ
where
a0 ¼
k

Ca
F 2ðn ¼ n�Þ; a1 ¼ b1 ¼

k
Ca

dF 2

dn
ðn ¼ n�Þ; a2 ¼ �

k
Ca

d2F 2

dn2
ðn ¼ n�Þ;

b2 ¼
k

Ca

d2F 1

dn2
ðn ¼ n�Þ; a3 ¼ 0; b3 ¼

k
2Ca

d3F 1

dn3
ðn ¼ n�Þ;
and D1, D2, D3 and D4 are undetermined constants. (Again, we note that K1! 0 in our asymptotic limits cho-
sen in this paper (16), but once again we retain these terms here so that we have an opportunity to estimate
their effect in our simulations, pushing the asymptotics strictly beyond their validity, for illustrative purposes.)
We do not expect to get a closed solution free of unknown constants in this local asymptotic expansion since
the partial differential equation is elliptic. It follows from Eqs. (20), (44) and (51) that
D1 ¼ Uðn ¼ n�; g ¼ 0Þ. ð52Þ
An asymptotic approximation, on the liquid–gas interface adjacent to the cusp, for the leading-order ver-
tical surface velocity component and the free-surface function f2 from Eq. (41), can be found by combining
Eqs. (17), (19), (20), (40), (41), and (44)–(51), and after some algebra we find
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V sðn� þ rÞ ¼ �K1b2

2
r2 þOðr3Þ ð53Þ
and
f2ðn� þ rÞ ¼ 8kan�AC2

B
r þ 2kA

B
ðaC2 � b2Þr2 þ 1

n�

K1b2

3
þ 8A

3B
½6kaC2 � b2	

� �
r3 þOðr4Þ ð54Þ
as r! 0 (with r > 0). Now K1 (though asymptotically small) is positive, therefore Eq. (53) implies that the ver-
tical free-surface interface velocity, immediately to the right of the cusp, is directed downwards, as the leading-
order term is negative. Hence the free-surface is being zipped together as the cusp propagates away from the
impact point, and so the droplets are coalescing.

As stated previously, the parameter A is asymptotically small because of an assumption here that the char-
acteristic surface tension relaxation length is much less than the radius of the droplet. However, we can take A

to be small but finite, strictly pushing the asymptotics beyond their range of applicability, but providing extra
insight into the coalescence process predicted by this model. Then Eq. (54) gives
df2

dn
ðn ¼ n�Þ ¼

8kan�AC2

B
ð55Þ
as r! 0, which can be used to find the correction to the contact angle hd for small time. If A = 0, the slope
of f2 at the cusp is zero. Therefore, hd decreases from 180� at small times only because of the effect of the
geometry in the far-field, given by A.

5. Computational solution

The computational solution of the stream function equations is described here, solving Eq. (21) subject to
boundary conditions (22)–(27). The numerical solution technique used is the finite difference method, and
because the partial differential equation is linear and elliptic the solution of a large system of linear equations
is required and is accomplished by the linear-algebra package MATLAB (2000). The finite difference scheme is
second order accurate. The grid is rectangular and the grid points are equally spaced in both directions. The
boundary conditions whose highest derivatives are first or second order, Eqs. (23)–(26), are applied by defining
an additional line of ‘ghost-points’ at n = �Dh or g = �Dh as appropriate (where Dh is the spatial step-size).
The normal stress boundary condition, Eq. (27), requires two lines of ghost-points to be defined adjacent to
the liquid–gas interface (at g = �Dh and g = �2Dh) because it contains third order derivatives. For the cylin-
drical cases the grid is found to converge with a mesh density of 50 spatial elements per cusp length, and
the length of each side of the overall grid is equal to 8 cusp lengths. For spherical drops we have 56 spatial
elements per cusp length, and the length of the sides of the grid are equal to 7 cusp lengths.

This study has not been confined to any specific type of liquid here and we vary the values of the fluid
parameters to test certain aspects of the interface theory. Table 1 is a summary of the values of the model’s
parameters presented here. The asymptotic limit (16) has K1! 0, so that the thickness of the interfacial layer
1
parameter values used in the numerical computations

Case: 1 2 3 4
Drop shape: Cylinder Cylinder Sphere Sphere

0.00 0.11 0.00 0.00
) 0.65 10�2 0.65 1.5 · 10�3

m�1) 105 104 105 1.5 · 106

10�3 10�5 10�3 5.6 · 10�9

�3) 1.3 · 103 1.2 · 103 1.3 · 103 103

m�1) 1.00 6.60 · 10�2 1.00 6.97 · 10�2

0.50 0.50 0.50 0.63
1.00 0.69 1.00 1.41
0.00 0.00 3.5 · 10�2 0.00
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dl is much smaller than any other length scale in the problem. Thus we choose K1 = 0 in some of our numerical
computations (cases 1, 3 and 4 in Table 1). However, it is instructive to use an unphysically large value of K1 in
some computations, in order to assess the effects of this mass transfer between the bulk and the interfaces, by
overestimating it (this is seen in case 2 in Table 1 where we choose K1 = 0.11). When we run our computations
for K1� 1 (e.g. K1 = 10�6) we cannot detect any observable differences in the results presented here when
compared to running computations for K1 = 0. (See Shaw, 2003 for a more comprehensive parametric study
involving computations with various values for K1 which are small but finite, and also a wide variety of other
numerical solutions. However, the cases presented here capture the possibilities well.)

A highly viscous fluid is used for cases 1 and 3. It has been estimated, from experimental observations (I
and Blake and Shikhmurzaev, 2002), that the surface tension relaxation time s might be proportional to
the viscosity l and b � l/dl. However, if the surface tension relaxation time is large then b might be consid-
erably less than l/dl (Blake and Shikhmurzaev, 2002). For cases 2 and 4, the viscosity l is smaller.

The stream function contour plot for case 1 is illustrated in Fig. 3 where the flow forms an anticlockwise
rolling motion. On this diagram, the liquid–gas free-surface is at g = 0, n > n*, while the trapped interior
liquid–liquid layer is at g = 0, 0 < n < n*. The flow is split into two parts by a dividing streamline: inside this
streamline there is an enclosed circulation flow, while the exterior streamlines flow out of the free-surface in
the far-field and flow around the enclosed circulation zone. These streamlines which enter or leave the line
g = 0 for n > n* correspond to a flow which moves the free-surface. Immediately to the right of the opening
propagating cusp at g = 0, n = n*, this flow ‘‘zips together’’ the free-surface ahead of the propagating, opening
cusp, since the streamlines point down on this line here, and cause coalescence. These streamlines become
highly compressed adjacent to the liquid–liquid interface and move adjacent to this line at g = 0,
0 < n < n*. Streamlines external to the dividing streamline meet up with the free-surface on the liquid–gas
interface to the right of the cusp as shown in Fig. 4 which is a close-up view of Fig. 3 near the moving contact
line. There is a stagnation point at the origin—the point of initial impact. The principal feature of the interface
theory is the removal of the pressure singularity at the origin and this is confirmed in the pressure contour
plot shown in Fig. 5 where the pressure is finite throughout the whole domain. A comparison between the
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numerical solution and the r! 0 (near cusp) asymptotics for W, calculated from Eq. (44), is shown in Fig. 6.
This is a plot of W along the radial line centred on the cusp and drawn at an angle h = p/2 radians. The two
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curves converge as r! 0. The asymptotic solution is calculated from Eq. (52) with D1 = 0.61, and all the other
constants D2, D3, and D4 were assumed to be zero for simplicity. (Hence these higher-order coefficients do not
greatly offset the near-cusp asymptotics.) This can be done for any other value of h with similar agreement (see
Shaw, 2003).

The corresponding flow for the spherical (case 3) is shown in Fig. 7—an anticlockwise rolling motion as for
the above cylindrical case. Again there is an enclosed and exterior flow. There are, however, some differences
observed in the flow in the vicinity of the cusp, seen in Figs. 8 and 9. (It is possible to see the lengthscale of the
finite difference grid in Fig. 9, because of the very small zoomed in nature of this diagram.) From Figs. 7–9, we
see that the vertical velocity component on the free-surface (g = 0, n > n*) changes from negative to positive to
negative and to positive again as n increases from n*. There is again a stagnation point at the origin. Imme-
diately to the right of the cusp at n = n* (Fig. 9) streamlines are striking the liquid–gas interface downwards,
indicating that the free-surface there is closing. So again the surface tension driven flow causes the free-surface
to be zipped together as the cusp propagates from left-to-right. The pressure contour plot for case 3 is illus-
trated in Fig. 10 and once again this shows a finite pressure everywhere.

In both the cylindrical and spherical cases, the flow is generated by surface tension which is moving the cusp
away from the initial impact point. Surface tension is driving interior liquid–liquid interface particles (along
this surface) towards the cusp (since Si is positive) and this Oðt1

2Þmotion is in turn propelling an O(t) anticlock-
wise rolling motion inside the bulk. The liquid–gas free-surface has a non-zero velocity. Streamlines are flow-
ing into the liquid–gas interface adjacent to the cusp and hence closing up the free-surface there, as mentioned
above; this is the onset of coalescence. Further away from the cusp the free-surface has an upward velocity—
this is the start of the evolution of the free-surface. The differences between the cylindrical and spherical flow
scenarios are geometrical: in the case of the coalescing cylinders the interior interface is an enlarging semi-
infinite strip, while in the case of the spheres this will be a enlarging circular disc.

For the cases where K1 is no longer very small a new flow layer is visible, as a result of boundary condi-
tion (24), adjacent to the trapped interior liquid–liquid interface and the liquid–gas interface immediately
to the right of the cusp. The streamlines for case 2, where K1 = 0.11, are plotted in Fig. 11. A close up
of this new flow layer is shown in Fig. 12. There are still regions of enclosed and exterior streamlines
as before with a dividing streamline, but here the stagnation point moves away from the origin to a higher
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point along the axis of symmetry (denoted SP on Fig. 12). Since K1 is larger, a significant flow can be seen to
leave the interior liquid–liquid interface at g = 0, 0 < n < n* and re-enter on the liquid–gas free-surface at
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g = 0, n > n*. We are clearly pushing the asymptotics strictly beyond its validity by choosing K1 = 0.11, and
these effects are very much exaggerated. However, it is instructive to view the qualitative nature of this flow.
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Streamlines for a much smaller value of s are shown for case 4 in Fig. 13. Similarly to case 3, there are
regions of interior and exterior streamlines and the flow near the cusp is similar to that shown in Figs. 8
and 9. A plot of the free-surface position for case 4, calculated from Eq. (41), is shown in Fig. 14. The slope
at n = n* is zero as specified by Eq. (55) since A = 0 in this calculation. The constant A is asymptotically small
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in this model and it is therefore not strictly correct to assign to it a non-zero value. However, a small value of
A, 0.0045, is used for case 2 so that some determination can be made of the effects of the droplet impact speed
and radius on the contact angle variation. A close up of f2 in the vicinity of the cusp for case 2 is plotted in
Fig. 15 and shows that the slope of f2 at the cusp agrees with the asymptotic value calculated from Eq. (55).
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Fig. 16 is a plot showing the evolution of the free-surface with time for case 2 at equal time intervals where f(t)
is calculated from Eq. (37). The initial slope of f at t = 0 is zero. Since A > 0 here, the slope at the opening,



Table 2
Slope at constant time intervals in free-surface animation for case 2

Curve

1 2 3 4 5

t 2.5 · 10�4 7.5 · 10�4 1.25 · 10�3 1.75 · 10�3 2.25 · 10�3

f 02ðn�Þ 1.12 · 10�6 1.16 · 10�6 1.40 · 10�6 1.95 · 10�6 2.70 · 10�6
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propagating cusp increases with time because the internal contact angle decreases from 180�. Since A is small
this cannot be seen easily in Fig. 16 but the slope does increase with time for each case and these values are
listed in Table 2. Similar ‘‘animations’’ can be also produced for the K1 = 0 cases, with similar results (Shaw,
2003).

Finally, note some of the qualitative features in Fig. 12 would probably also be present in Figs. 4 and 9 if
instead K1 were chosen to be very small but positive in cases 1 and 3 (as opposed to zero), but would require a
very fine grid to capture them.
6. Discussion

The interface formation/disappearance theory of I has been examined at the very early stages of coales-
cence, immediately after impact. In I a small time, self-similar, asymptotic approximation of the model was
derived for the case of two coalescing liquid cylinders which have equal volumes, and equal and opposite
impact velocities that are sufficiently small for self-similarity. These asymptotics have been extended here to
analyse the evolution of the free-surface at small times. Also, the equations were solved here for the first time
using a finite difference method to obtain the resulting velocity and pressure fields in the flow. A small time,
self-similar, asymptotic approximation of this model when applied to the case of two coalescing spheres which
is more relevant to potential experiments, has also been derived and numerical solutions have been computed
for that case as well. The finite difference computations have shown that the cusp propagates away from the
initial impact point and the surface tension gradients result in coalescence, and confirm the removal of the
pressure singularity which was inherent in the conventional approach. For the case of the coalescing cylinders,
a local asymptotic approximation of the stream function in the vicinity of the cusp was derived and showed
good agreement with the finite difference solution.

So far, the model has only been used to describe the very early stages of coalescence where the contact angle
is close to 180�. However, to simulate the subsequent stages of coalescence it will be necessary to take into
account the evolution of the contact angle and here self-similarity can no longer be assumed. Therefore it will
be necessary to solve the continuity and unsteady Navier–Stokes equations (1) and (2) respectively, subject to
the boundary conditions (3)–(9) with (11) and (12). In principle one could use a finite difference (e.g.
Dornseifer et al., 1998), finite volume (e.g. Lafaurie et al., 1994), finite element (e.g. Gresho and Sani, 2000
and Suckling, 2003) or boundary integral method (e.g. Pergamalis, 2002 and Pozrikidis, 2002) to solve this
full droplet coalescence problem. This is the subject of current work, where we have chosen the finite element
method. The results of these computations will be reported at a future date. We will use this small-time
solution described here as the initial condition for these simulations.

Our finite element method uses Taylor–Hood area elements to discretise the bulk spatial domain and the
free-surface is approximated by quadratic line elements. The locations of the grid points are calculated using
toroidal coordinates, with the advantage that it is then more straight forward to generate a mesh which is most
finely refined in the vicinity of the contact line as required. Toroidal coordinates also facilitate the derivation
of a hybrid Euler–Lagrange scheme that tracks the motion of the free-surface but does not tie the motion of
the grid-points to the movement of continuum liquid particles. See Suckling (2003) for the initial work in this
direction using finite elements.

The objective of carrying out the computations presented here was to study the liquid bridge formation, so
that the correct model is identified for coalescence in important flows arising in, for example, micro-fluidics,
which is an area of growing engineering importance, especially for lab-on-chip devices. Calculations here
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suggest that the novel features of this flow will be most easily observed when the viscosity m is large and the
impact speed U1 is small. The rolling motion in the liquid described here, close to the impact point, might be
observable in experiments if the viscosity m is large and the droplet radius R is small. Experimental observation
of these phenomena, and the liquid bridge formation in general, clearly provide a challenge to experimental-
ists. We hope that this, and latter works, will provide motivation for such carefully designed experiments.
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